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Diffusion-limited aggregation as a growth process statistically invariant
under an infinitesimal affine transformation of mass and multiple spatial coordinates

John Jarecki
160 East Main Street, Glen Lyon, Pennsylvania 18617

~Received 19 August 1996; revised manuscript received 7 April 1997!

This work has two major results. First, it proposes a model of diffusion-limited aggregation~DLA ! that
accounts for the diversity of mass dependence exponents of four characteristic lengths: radius of gyration,
major and minor asymmetry axes, and width of active growth zone. Second, it uses the agreement of model
predictions with simulation data to show that the invariance of DLA growth probability under an infinitesimal
affine transformation of mass and several growth zone spatial coordinates is consistent with the results of
simulation data, to a high degree of approximation, in the range of aggregate mass from 200 to 50 000 for the
first three of the above characteristic lengths, and in the range 1100–440 000 for the active zone width.
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Diffusion-limited aggregation~DLA !, a process by which
an aggregate of particles grows by the addition of a suc
sion of randomly walking particles@1#, generates growth pat
terns that are similar to patterns observed as arising fro
range of widely different physical processes, such as e
trodeposition@2#, dielectric breakdown@3#, and viscous fin-
gering @4#.

Investigators have used a variety of approaches in
tempting to understand this process. One category of
proach has been to model the process in terms of the me
nism of a field of diffusing particles@5–7#. A second has
been to model the process by imposing the simplifying pr
erty of scale invariance on a growth process. These incl
methods of real-space renormalization group and bra
competition@8–10#. While these approaches have been s
cessful in explaining a number of features of DLA, importa
properties of this process are not yet understood.

Of these latter properties, the present paper will be c
cerned with those related to the fact that different charac
istic lengths of the process, such as radius of gyration, m
and minor asymmetry axes, and width of the active grow
region, appear to depend on the aggregate mass~number of
particles! through different exponents@11–14#. A number of
these lengths have recently been involved in a discussio
whether DLA can be described by a single scaling expon
or whether it has a more complex scaling@15#. Specifically,
I shall propose a model of DLA which attempts to accou
for the characteristic length mass dependence describe
the following.

~1! The aggregates are asymmetric. Quantifying the as
metry by a moment of inertia analysis leads to a descrip
of the aggregates in terms of a major axisr . and a minor
axis r , @11#.

~2! If the aggregates are described using the character
lengths of radius of gyrationr g @12–13#, major and minor
asymmetry axesr . andr , @11#, and the width of the active
zone of growthw @12–14#, then the dependence of each
these quantities on aggregate mass can be described
power lawl}mb, wherel represents one of the lengths, a
the exponentb represents its mass dependence.
561063-651X/97/56~3!/3301~9!/$10.00
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~3! The value ofb is different for each of the characte
istic lengths. It also appears to vary with mass for the ma
and minor axes and for the active zone width, but appear
be nearly constant for the radius of gyration. Table I summ
rizes the values of these exponents, given by numer
simulations.

My approach to writing a model of DLA is suggested b
the asymmetry of the aggregates. One can use as a sta
point the usual relationship between the radius of gyrationr g
and massm, which is given in terms of fractal dimensionD
by

r g}m1/D. ~1!

Though DLA is an asymmetric process, it is usually trea
as involving only the one spatial~radial! dimension. Investi-
gators have found@16# that the probabilityp(m,r )dr that a
particle will be added at massm in a interval between radius
r and r 1dr of the active growth region is, to an order o
approximation, invariant under the affine@17# transformation
F0 given by

F0 : m→lm

r→l1/Dr , ~2!

wherel is a real positive number.
The asymmetry of aggregates, however, suggests

they might be more accurately described in terms of sev
spatial dimensions, which would allow taking this asymm
try into account. Each of the coordinates corresponding t
spatial dimension would then represent a different direct
of growth away from the center of the aggregate. In analo
to the invariance relationship given above, one might th
expect that the probability that a particle will be added
massm to a small region of the aggregate active zone, a
position written in terms of these new coordinates, would
invariant under a scaling transformation of mass and sev
spatial dimensions.

In order to illustrate this point let us perform this gene
alization in following intuitive way. In Eq.~2! the affine
3301 © 1997 The American Physical Society
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TABLE I. Numerical simulation values for the mass dependence exponentb are listed for four aggregate
characteristic lengths, together with the mass range over which they were measured. Quantities in par
after exponent values are estimated uncertainties.

Characteristic length Scaling exponent Range of mass Referenc

Radius of gyration 0.584 100–50 000 @13#

0.582 ~0.002! 100–50 000 @11#

0.588 ~0.003! 100–2000 @11#

0.5830 ~0.0014! 10,000–1 000 000 @12#

0.5832 ~0.0014! 100,000–1 000 000 @12#

Major axis 0.567~0.004! 100–50 000 @11#

0.570 ~0.014! 10,000–50 000 @11#

0.555 ~0.018! 100–2000 @11#

Minor axis 0.606~0.004! 100–50 000 @11#

0.593 ~0.011! 10 000–50 000 @11#

0.621 ~0.019! 100–2000 @11#

Width of active zone 0.48~0.01! 100–3000 @14#

0.4820.54 100–50 000 @13#

0.4820.56 1100–600 000 @12#
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transformationF0 performing the scaling can be represent
by a matrix multiplying a two-dimensional column vect
with componentsm and r . In general, an affine transforma
tion performing scaling in a multidimensional coordina
system can be represented by a nonsingular matrix wh
elements are real numbers@18#. When we change the de
scription of the aggregate by replacing the radial coordinar
by a set ofN spatial coordinatesx1 ,x2 ,...,xN , we can gen-
eralize the affine transformationF0 by replacing it with a
higher dimensional affine transformation, call itF, which,
since it performs scaling, can again be represented by a
singular matrix multiplying an (N11)-dimensional vector
j5(m,x1 ,x2 ,...,xN). We then have the linear generalize
transformationF given by

j85Fj, ~3!

wherej8 is another vector representing position in the act
zone.

In terms of vectorj, the assumption that the growth pro
ability of the active zone is invariant under the scaling tra
formationF can be written

p~Fj!dV~Fj!5p~j!dV, ~4!

wherep(j)dV is the probability of a particle being added
an aggregate, at massm in the active growth zone in an
infinitesimal regiondV, and dV(Fj) is the infinitesimal
region transformed by operatorF. This invariance assump
tion acts as a requirement on change of the growth proba
ity as mass increases. It can be used to calculate equatio
motion for ensemble averages of active zone coordinates
rectly. Intuitively, one would expect that the application
this scaling transformation to the set of active zone positi
would then describe the statistical spatial growth of the
gregates as mass increases. That is, the invariance ass
tion determines how positions in the active zonej will move,
on the average, as mass increases.

Let us illustrate this point in an intuitive way using th
transformation of equation~2!. First, writing the infinitesimal
se
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e
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il-
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form of transformationF0 , for l close to unity, and then
because the scaling invariance is statistical, applying
transformation to a vector with componentsm and ^r &,
where^r & is ensemble average of the radiusr , we have the
equation of motion

m
]

]m
^r &5~1/D !^r & ~5!

for ^r &, which can be identified with the average radius
deposition and is proportional to the radius of gyration. T
result is just another form of the radius of gyration-ma
relationship of Eq.~1!. If the aggregates were symmetrical,
would be a statistical model of their growth. It is a line
equation, inheriting this property from the linearity of th
affine transformation of Eq.~2!. It has a constant coefficien
on the right-hand side which, through its dependence on
fractal dimensionD, contains the growth dynamics, includ
ing complex interactions between branches whose repre
tation in a more mechanical model, one would expect, wo
be nonlinear. It describes the active zone in terms of a sin
characteristic length, radius of gyration, by averaging o
its complex branching and multifractal structure.

The main results of this paper are a consequence of
forming a not dissimilar derivation of equations of motio
this time using, in place of Eq.~2!, the analogous multidi-
mensional transformation of Eq.~3!. The resulting equations
will be seen to share many of the properties of Eq.~5!, and in
fact will be just an extension of Eq.~5! to several spatial
dimensions. Specifically, these equations are linear in
spatial coordinates. In place of a constant multiplying
single coordinate on the right-hand side, one obtains a c
stant matrix multiplying a vector of spatial coordinate e
ments. Like the multiplicative constant in Eq.~5!, this matrix
can be interpreted as containing the growth dynamics. N
however, this information is distributed among its elemen
the diagonal elements interpreted as representing gro
along a single coordinate, and the nondiagonal element
representing interactions between growth measured a
different coordinates.
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The linearity of these equations is inherited from the l
earity of the affine transformation of Eq.~3!. It results from
the severe restriction of statistical scaling invariance pla
on the structure of the equations of motion. It allows them
represent complex dynamics by constants, and gives ris
algebraic solutions. However, this should not seem surp
ing in light of the fact that Eq.~5!, the radius of gyration-
mass relationship, also represents this dynamics by a
stant.

These equations of motion will be seen to statistica
describe the active zone, of a two-dimensional aggregate
a vector of four averaged spatial coordinates, a large eno
number to represent the asymmetry, in terms of a major
a minor axis, and the characteristic lengths radius of gyra
and active zone width. Again, this should not be surprising
light of the fact that Eq.~5! also statistically describes th
active zone in terms of the radius of gyration.

These equations do not predict the growth of an in
vidual aggregate. They are consequences of the invarian
the growth probability under a symmetry transformatio
They are therefore statistical equations, as is Eq.~5!.

Since the multidimensional affine transformation leads
equations of motion for aggregate growth, one would exp
that in choosing the detailed form and parameters of the m
tidimensional transformation, one could look for clu
among the physical properties of the growth process. T
will be discussed below.

Note that the model makes no assumptions about phys
structures of aggregate growth, such as cells or branche
about a growth mechanism, such as an interaction
branches through a Laplacian field. It instead is written
terms of distances to the active zone, measured along va
coordinates, and the scaling symmetry of the active zon
mass increases. If interactions between growth processe
discussed, they are mentioned only as interpretations
terms occurring in the symmetry transformation. As Eq.~5!
indicates, symmetry terms containing interaction informat
may bear little resemblance to mechanical interaction ter

The following discussion gives a more detailed accoun
the construction of the proposed DLA model and simulat
evidence to support it. Section I below defines a scal
transformation of mass and spatial coordinates under w
one might expect DLA to be invariant, and writes an infin
tesimal form of the transformation in terms of differenti
equations relating changes in active zone position and ag
gate mass. Section II derives equations of motion for ch
acteristic lengths and discusses physical considerations
volved in determining model parameters. Section
compares the results of the model with the data of D
numerical simulations. Section IV is a summary and disc
sion of the results.

I. DEFINITION OF A SCALING TRANSFORMATION
OF MASS AND SPATIAL COORDINATES

I have assumed that position in the active zone of
aggregate growth process can be written in terms of a se
N spatial coordinatesxi , i 51,2, . . . ,N, and have defined a
vectorj5(m,x1 ,x2 ,...,xN) as a compact way of writing ac
tive zone position at a given aggregate massm.

The basic assumption of the proposed model is then
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the probabilityp(j)dV of a particle being added to an ag
gregate, at massm in the active growth zone in an infinites
mal regiondV, and at a position given by the coordinat
x1 ,x2 , . . . ,xN , is invariant under a scaling of mass and sp
tial coordinates. In analogy to the affine transformation
mass and one spatial dimension of Eq.~2!, I perform this
scaling by an affine transformation in mass andN spatial
dimensions. Affine transformations are linear transform
tions that represent operations including magnifications
translations of coordinates@18#. As mentioned above, an af
fine transformation performing scaling in a multidimension
coordinate system can be represented by a nonsingular
trix whose elements are real numbers. This is indica
above as transformationF of Eq. ~3!. One can write the
elements of this matrix, in analogy to Eq.~2!, as

Fi j 5lAi j , ~6!

where l is a real number greater than unity, and theAi j
determine matrix element values, withi 50,1,2, . . . ,N, j
50,1,2, . . . ,N.

Let us now write the application of the transformationF
to vector j as a differential equation relating infinitesim
changes in active zone coordinatesx1 ,x2 ,...,xN as mass in-
creases incrementally. This result will be used in Sec. II
write an expression for the invariance of the growth pro
ability under the coordinate transformationF. The latter re-
lation will in turn be used to derive equations of motion f
statistical moments of active zone position. Note that t
section contains no DLA equations of motion, but only e
pressions for a mathematical transformation of coordinat

Let us first restrict transformationF so that it induces
only an infinitesimal change in mass, that is,l will be infini-
tesimally close to unity; these results will then not apply
aggregates with a small number of particles. We obtain
this case, the following result for the rate of change, w
respect tol, in active zone position~given by coordinate
vectorj! that is produced by application of the operatorF:

]j i

]l
5(

j
Ai j j j , ~7!

where i 50,1,2, . . . ,N, j 50,1,2, . . . ,N. If we restrict the
transformation to eliminate what would seem to be the
physical situation where mass and spatial coordinates in
act directly through the elementsA0 j andAj 0 with j Þ0, we
can set

A0 j5Aj 050, j Þ0. ~8a!

In addition, we can choose

A0051 ~8b!

without losing generality, because this choice just gives
relation between mass and arbitrary scaling parameterl. We
then have the following result for the variation with respe
to mass of the spatial coordinates under application of
operatorF:

]

]m
xi5(

j
Ai j xj , ~9!
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3304 56JOHN JARECKI
where m5 ln(m). Now, however, i 51, . . . ,N and j
51, . . . ,N. Here, the transformation has been written in t
form of differential equations relating change in each of
active zone spatial coordinatesxi to change in log of massm.

II. A MODEL OF AGGREGATE GROWTH

Using the coordinate transformationF, in the incremental
form of Eq. ~9!, will allow us to derive statistical equation
of motion for the active zone coordinates and characteri
aggregate lengths. First, let us write the invariance of
growth probabilityp(x,m)dV under the coordinate transfo
mation F, where x represents the coordinate s
x1 ,x2 ,...xN , and a prime on a quantity indicates it has be
incrementally changed according transformation of Eq.~9!.
The invariance of the probability is represented by the eq
tion

(
i , j

]p~x,m!

]xi
Ai j xj1

]p~x,m!

]m

1p~x,m!
]

]m8
@J~x,m8!#m85m50, ~10a!

whereJ, given by

dV~x8,m8!5J~x8,m8!dV~x,m!, ~10b!

is the Jacobian determinant of the transformation. Use of
~10!, in a direct calculation of the change in coordinate m
ments induced by the transformation, then yields one se
equations of motion for the ensemble averages^xi& of the
aggregate coordinates and another for their two-point cu
lants ^xixj&c . The coordinate ensemble averages lead
equations of motion for radius of gyration and major a
minor asymmetry axes, and the two-point cumulants lead
equations for active zone width. Appendix A contains a d
cussion of how active zone is defined and measured,
how it is related to the two-point cumulants.

Performing the direct calculations mentioned above, o
arrives at equations for the ensemble averages,

]

]m
^xi&5(

j
Ai j ^xj&, ~11!

with i 51, . . . ,4. Theequations for the cumulants can, b
making use of their symmetry under interchange of the
ordinate indices, be written as the following set of ten eq
tions:

]

]m
^xixj&c5(

k
Aik^xkxj&c1(

k
Ajk^xkxi&c , ~12!

wherej > i , andi , j 51, . . . ,4. If,further, the ten index pairs
$ i , j % are treated as a single index, then Eqs.~12! can be
written in the form

]

]m
^xixj&c5 (

~ l ,n!
B~ i , j !~ l ,n!^xlxn&c , ~13!
e
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where the elements of matrixB are given in terms of the
matrix elements ofA, and the sum is over all ten index pai
$ l ,n%.

Writing the solutions to the equation sets~11! and~13! is
simplified by the fact that both have the same form, given
the vector equation

]

]m
u5Lu, ~14!

whereL represents either matrixA or B, and whereu indi-
cates the vector whose elements are either the average
ordinates^xi&, for matrix A, or the cumulantŝxixj&c , for
matrix B. The well-known solution of this equation is the
given by

u~m!5(
l

e* ~ l !•u~m0!exp@ l ~m2m0!#, ~15!

whereu(m) is the solution at mass parameterm, u(m0) is the
initial value of the solution atm0 , e( l ) is an eigenvector of
the matrixL corresponding to the eigenvaluel . For the case
of a non-self-adjoint matrixB, e* ( l ) is an eigenvector of the
adjoint of matrixL corresponding to the eigenvaluel ; for the
case of a self-adjoint matrixA, e* ( l )5e( l ). The quantity
e* ( l )•u(m0) is the inner product the vectorse* ( l ) and
u(m0), and the summation is carried out over all eigenvalu
of the matrix.

As argued in the introduction, one would expect that
choosing the parameter values of the multidimensional tra
formation, and therefore of the equations of motion, o
could look for clues among the physical properties of t
growth process. Specifically, the fact that the mass dep
dence exponents of the major and minor axes differ by o
a fraction of their average value suggests that their differe
is caused by an interaction of growth along different spa
dimensions. Let us identify this interaction with the of
diagonal elements in the equations of motion, that is, o
diagonal elements of matrixA. Similarly, the fact that these
two mass dependence exponents differ from the space-fi
value of one-half by only a fraction of this value sugge
that, if these growth processes were mathematically isola
they would have identical mass-dependent exponents,
that each would be space filling. Let us then identify t
motion of the isolated processes with the diagonal eleme
of A. A comparison of the analogous expressions in Eqs.~2!
and ~6! would then lead us to set each of the diagonal e
ments ofA to the space-filling value of one-half.

The spatial coordinatesxi , as described above, represe
directions of growth away from the aggregate seed parti
Because the asymmetry of the aggregates is described
equately, in rectangular coordinates, by the magnitudes
mass-dependent exponents of their major and minor a
@11#, it would seem that one can define the spatial coor
natesxi as four positive distances from the seed particle
positions in the active growth region, each in a direction a
90° angle from its two neighbors. That is, if a two
dimensional rectangular coordinate system were centere
the seed particle, the coordinatesxi would lie along all four
positive and negative coordinate axes.
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Finally, if one of these growth processes interact w
others, the most reasonable expectation is that it would
teract with its neighbors to its right and left.

With these assumptions, the elements of the matrixA, for
1< i , j <4, take the following values

Ai j 5H v0 ,
v1 ,
0

i 5 j
u i 2 j u51 or i 51,j 54 or j 51,i 54
otherwise,

~16!

wherev0 represents the space-filling value of one-half, a
v1 is an undetermined constant representing the interac
between a growth process and its neighbors. Since the
ments of matrixA are known, matrixB can be found. An
expression for matrixB is given in Appendix B.

III. COMPARISON WITH NUMERICAL SIMULATIONS

In summary, the above argument, by starting with
assumption that the DLA growth zone is invariant under
infinitesimal affine transformation defined by Eqs.~3!, ~6!,
~8!, and~16!, describes a model of aggregate growth wh
implies the equations of motion, given by Eqs.~11! and~13!,
for the growth of the characteristic aggregate lengths. T
equations of motion have the form of an initial value pro
lem with one undetermined parameterv1 . The following dis-
cussion~1! determines these initial conditions from the n
merical simulation data,~2! finds a value for parameterv1 ,
and~3! displays the evidence that the predictions for grow
of the characteristic lengths from their initial values are co
sistent, to a high degree, within the mass range conside
with the assumption of affine symmetry.

For the calculation of radius of gyration and major a
minor axes, the mass range considered here is 200–50
which includes all but the lowest part of the mass range
the data in Ref.@11#. Initial conditions for these quantitie
are set at mass equal to 200. For the active zone width,
mass range is 1100–440 000, corresponding to values ofm in
the range 7–13, which is approximately the mass range
the data in Ref.@12#. The initial condition is set atm equal to
7. In both cases, including lower mass values would
further test the proposed model, because it does not app
aggregates of small mass.

Initial conditions for calculating a characteristic length a
chosen to reflect the experimental situation, including
relevant coordinate average or cumulant, used to mea

TABLE II. Initial conditions, used with either Eqs.~11! or ~13!,
in calculating the growth of four aggregate characteristic lengths
listed along with the mass for which they are given.

Characteristic
length mass ^xodd& ^xeven& ^xeven or odd

2 &/^xevenxodd&

Radius of
gyration @11#

200 10.47 10.47

Major,
minor axes@11#

200 8.54 5.93

Width of
active zone@21#

1096 28.7
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that quantity. Table II is a summary of the initial condition
for Eqs. ~11! and ~13! together with the references from
which the data was taken. When choosing initial conditio
for calculating the angular independent radius of gyration
take the coordinatesx1 ,...x4 to be fixed in space, the value
of their ensemble averages to be independent of individ
aggregate orientation, and each average to be equal to
radius of gyration. The initial conditions for these coord
nates are then given directly by the simulation results@11#.

For choosing major and minor axis initial conditions,
take the coordinatesx1 ,...x4 to be fixed in the body of the
aggregate, and take the ensemble averages of the aggr
to have inversion symmetry about the seed particle. I a
take each of the ensemble averages of coordinatesx1 andx3
to be equal to that of the major axis and, similarly, take tho
of x2 andx4 to be equal to that of the minor axis. The initia
conditions for these coordinates are also given directly by
simulation results@11#.

For active zone initial conditions, I again use coordina
fixed in space because active zone width is also indepen
of individual aggregate orientation. For Eq.~13!, in which
active zone initial conditions are to be used, there are
independent quantities that enter into these initial conditio
the same-coordinate cumulant^xi

2&c and the cross-coordinat
cumulant^xixj&c , iÞ j . Actually, in order to calculateb for
the active zone width, as is done here, all that is needed is
ratio of these the quantities.

Because I am not aware of any previous measuremen
this ratio, I found a value using a DLA computer simulatio
In order to make clear how these cumulants were measu
note that in a single aggregate each coordinatex1 ,...x4 rep-
resents the active zone position, at a given mass, meas
along one the four orthogonal half-axes. Therefore, for
ample, the same-coordinate cumulant^x1

2&c involves aver-
ages of the distancex1 from the seed particle to the activ
zone on half-axis number 1. The cross-coordinate cumu
^x1x2&c involves averages of the distancesx1 and x2 to the
active zone, where both distances are from the same ag
gate at the same mass.

Using the simulation, I first found values for the two c
mulants at mass intervals of 200 in the mass range 60
1600 using 200 aggregates for each point@19#. On a log-log
plot of each cumulant against mass, a linear regression g
a best fit to the data and a value for each cumulant atm equal
to 7. The resulting ratio of same-coordinate to cro
coordinate cumulant at that value ofm is approximately
28.7. Data for the cross-coordinate cumulant contain a g
deal of randomness. Taking this into account gives appro
mate uncertainty limits of28.713.8 for the upper limit and
28.727.0 for the lower limit.

Using the initial conditions above, one can find a val
for the undetermined parameterv1 . The most straightfor-
ward and accurate way seems to be to fit the calculated v
of the exponentb for radius of gyrationr g to its high mass
simulated value. The reason is that the model-predicted v
for b is a constant, and its simulation value appears to
nearly constant over the range for which it has been m
sured. The simulation value is constant to within1

2 % for
masses above approximately 1800, and appears to osc
about its high mass value for masses down to about 1
@12#. The result of this fitting procedure is thatv150.0415,

re
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3306 56JOHN JARECKI
corresponding to an exponentb50.5830 for the radius of
gyration.

Then, applying the solution given in Eq.~15! to Eq. ~11!,
together with the appropriate initial conditions, gives t
mass dependence for the growth of the radius of gyration
of the major and minor axes. These results, shown in Fig
and 2, agree well with simulation results. Figure 1 shows
variation of the three characteristic lengths with mass,
Fig. 2 shows the variation of the ratio of minor to major ax
with mass. Also, calculated values for the mass-depende
exponentb for the major and minor axes, shown in Table I
agree well~to within 1.3% or better! with simulation results
in the three mass ranges 100–2000, 10 000–50 000,
100–50 000. Both the calculated and simulated values ob
for major and minor axes vary monotonically over the thr
mass ranges. For the major axis, the calculated value
creases by 1.6%, while the simulated value increases
0.9%; and for the minor axis, both values decrease, the
culated value, by 2.5% and the simulated, by 4.6%@11#. In
contrast, as mentioned above, the calculated value ofb for

FIG. 1. The log of each of three characteristic lengths is plot
against log of massm. The lines represent calculated results of t
proposed model, and the points represent results of numerical s
lations from Ref.@11#. The major axisr . is represented by the to
line and the points,1; the radius of gyrationr g is represented by
the middle line and the points,j; the minor axisr , is represented
by the bottom line and the points,l.
d
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e
d

ce

nd

e
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by
l-

the radius of gyration is constant in the three mass rang
while the simulation value is nearly constant@12#.

As can be seen in Fig. 1, calculated values for all thr
characteristic lengths appear to increase at a slightly slo
rate than simulated values. A possible explanation is t
initial conditions are set here at the small mass value of 2
If they are set at a higher value, such as 1100, the disc
ancy decreases.

In an analogous way to Eq.~11!, the solution of Eq.~13!
yields the mass dependence of the cumulants^xi

2&c for i
51 . . . 4.These quantities, all equal because of the symm
try of the initial conditions, are each equal to the square
the width of the active zone. Therefore, the derivative w
respect tom of the natural logarithm of the square root of an
^xi

2&c is equal to the mass dependence exponentb of the
active zone width. Shown in Fig. 3, for the mass range
about 1100–440 000@20#, the calculated values ofb have
the correct qualitative increase with mass, and also ag
well with simulation values.

Although the simulated value for the initial condition use
to solve Eq.~13! has a great deal of uncertainty, the solutio
to the equation~in Fig. 3! is only weakly dependent on its
value. For example, atm equal to 7, this uncertainty could

d

u-

FIG. 2. The ratio of the minor to the major symmetry ax
r , /r . is plotted against the log of massm. The line represents the
calculated results of the proposed model, and the points repre
the results of numerical simulations from Ref.@11#.
with the
uantities
TABLE III. This list compares results for the mass dependence exponentsb of three characteristic
aggregate lengths given by the proposed model and by numerical simulations. The results are listed
mass range for which they were measured for calculated. References are to numerical simulations. Q
in parentheses after simulation exponent values are estimated uncertainties.

Characteristic length Range of mass
Model
value

Simulation
value Reference

Radius of gyration 200–50 000 0.5830 0.5830~0.0014! @12#

Major axis 200–2000 0.561 0.555~0.018! @11#

10 000–50,000 0.570 0.570~0.014! @11#

200–50 000 0.566 0.567~0.004! @11#

Minor axis 200–2000 0.613 0.621~0.019! @11#

10 000–50 000 0.598 0.593~0.011! @11#

200–50 000 0.606 0.606~0.004! @11#
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56 3307DIFFUSION-LIMITED AGGREGATION AS A GROWTH . . .
change active zone width by as much as 1.6% and atm equal
to 13, it could change width by as much as 0.8%.

In addition to the agreement of calculated characteri
lengths with numerical simulation results, the calculated v
ues have clear geometric interpretations within the eigenv
tor space of the matricesA andB. Table IV shows the eigen
vectors, and corresponding eigenvalues, that contribute to
growth of the aggregate characteristic lengths. For the ra
of gyration, only the angular independent eigenvector c
tributes to its growth, because of the angular independe
of the initial conditions. The corresponding eigenval
0.5830 is therefore equal to the mass dependence exponb
of this characteristic length. For the major and minor ax
both the angular independent eigenvector and the inver
symmetric vector contribute to growth, because of the inv
sion symmetry of the initial conditions. The eigenvalues
these two vectors, 0.5830 and 0.4170, respectively, there
both contribute to the exponentb for the major and minor
axes. This has the consequences that~1! neitherb, for the
two axes, is constant, and that~2! theb of the minor axis has
a larger value than either of the two contributing eigenv
ues, because of the partial cancellation of the two contri
tions. For the active zone width, only the two angular ind
pendent eigenvectors, with eigenvalues 1.166 and 0.
contribute to growth, again because of the angular indep
dence of the initial conditions. The combination of these t

FIG. 3. The mass dependence exponentb for the aggregate
active zone width is plotted against log of massm. The line repre-
sents the calculated results of the proposed model, and the p
represent the results of numerical simulation from Ref.@12#.
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values of mass dependence accounts for the variation in
active zone width exponentb, within a mass range of 1100–
440 000, from a low value of about 0.48 to a high value
about 0.56. These limits are comparable to half the value
the two contributing eigenvalues, that is, 0.417 and 0.58

IV. SUMMARY AND DISCUSSION

This work has two major results. It proposes a model
DLA that accounts for the diversity of mass dependence
ponents of four characteristic lengths: radius of gyration, m
jor and minor asymmetry axes, and width of active grow
zone. It uses the agreement of model predictions with sim
lation data to show that the invariance of DLA growth pro
ability under an infinitesimal affine transformation of ma
and several growth zone spatial coordinates is consis
with the results of simulation data.

The limitations of the model include that it provides on
a statistical picture of DLA. It makes testable stateme
about only the characteristic lengths of the active grow
zone, all of which are of order of magnitude of the aggreg
itself. It does not apply to small aggregates or the ea
growth period of large aggregates; initial conditions for t
equations of motion, then, must be supplied by simulation
has been tested for only the ranges of mass where chara
istic length data are available.

However, the model does predict the change, as mas
creases, of the four characteristic lengths with a high deg
of accuracy. It predicts quantitative relationships among fr
tal dimension, aggregate asymmetry, and the multiple m
dependent exponents.

The affine symmetry portrays aggregate growth, not a
detailed dynamics of aggregate structures, but as the resu
scaling invariance of the growth process in multiple spa
dimensions, that is, as the result of an overall restriction o
lack of preferred length parameter. Multiple spatial dime
sions, however, allow the symmetry transformation to ha
terms that lead to interactions between growth proces
along different coordinates. These interactions provide
explanation of the complex behavior of aggregate grow
They arise within the restriction of scaling invariance a
take on a different mathematical form from the interactio
of the detailed dynamics.

The model contributes to the ongoing discussion
whether DLA is characterized by a single scaling expone
with complications arising from finite-size effects such
random fluctuations, or whether DLA has a more comp
scaling property. By its success in accounting for charac

nts
r
TABLE IV. Two eigenvectors of matrixA and two of matrixB contribute to the growth of the fou
characteristic lengths. The componentsei ~i 51 – 4 for A and i 511,12, . . . ,44 for B! of each of these is
listed here along with its corresponding eigenvalue.

Matrix eigenvalue

Eigenvector ofA Eigenvector ofB

eodd eeven e11,e13,e22,e24,e33,e44 e12,e14,e23,e34

A 0.5830 0.5 0.5
0.4170 0.5 20.5

B 1.166 0.323 0.323
0.834 0.323 20.323
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3308 56JOHN JARECKI
istic length growth, it suggests that complex scaling, that
invariance under the multidimensional affine transformati
is a reasonable explanation for the diversity of mass dep
dence exponents among the four characteristic length
gives a physical picture of how this scaling arises in terms
growth processes which, if isolated would have simple sc
ing properties, but instead interact and form a more comp
aggregate scaling relationship.

The model therefore describes DLA as a process in wh
the different scaling exponents of the characteristic leng
arise from deterministic dynamics. But it predicts that th
complex scaling will only occur for finite mass. In the lim
of very large mass, it predicts that all characteristic leng
will scale with the same exponent, that is, all growth terms
the solution of the equations of motion will become neg
gible except for those corresponding to the largest eig
value.

In spite of the differences between the picture of DL
given by the proposed model and that of the early intuit
view of DLA as simple scale invariant growth, both have
form of scaling symmetry under which the growth is stat
tically invariant and which simplifies the view of the proces

APPENDIX A: WIDTH OF ACTIVE GROWTH ZONE

The active growth zone in DLA can be understood in
itively as the fragmented outer region of a single aggreg
where particles are added@11#, or statistically as a distribu
tion of locations, over an ensemble of aggregates of gi
mass, at which the last particle is added@14#. The purpose of
this discussion is an attempt to relate these two views
active zone, and to determine their relationship to the p
posed model.

Let us first show that the proposed model uses the st
tical view of active zone. Let us examine Eq.~2! of a paper
by Plischke and Racz@14# that contains the original defini
tion of width of the active zone. Written below~numbered as
PR 2! in its original notation, this equation consists of de
nitions of mean deposition radiusr̄ N and the square of activ
zone widthjN

2 ~please note that their quantityjN
2 is not the

vectorj used above!:

r̄ N5
1

M (
i 51

M

r N~ i !, jN
2 5~r N2 r̄ N!2. ~PR2!

The authors definer N( i ) as ‘‘the deposition radius of theNth
particle in thei th cluster.’’ In other words, the mean dep
sition radius is defined as an average value of the ra
taken over an ensemble of aggregates. More importantly
our purposes, the notation indicates that the square of ac
zone width is also an aggregate ensemble average, of sq
of deviations of the deposition radius from its mean. That
it is the variance of the deposition radius over the ensem
In terms of the coordinatesxi of the proposed model, which
represent position in the aggregate active zone, it would t
seem that active zone width can be represented by the cu
lants^xi

2&c , and its equation of motion is given by the equ
tions of motion for the two-point cumulantŝxixj&c . The
present paper uses active zone width simulation result
Tolman and Meakin@12#, Meakin and Sander@13#, and
,
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Plischke and Racz@14#, all of which use the statistical view
of active zone and the original statistical definition of
width.

What then is the relationship between the intuitive a
statistical views? Since the statistical view of the active zo
tells us only about ensemble averages and ensemble flu
tions, one might ask if it is capable of describing the width
the active zone considered as the fragmented outer regio
a single aggregate where particles are added? The follow
consideration indicates that there is not such a great dif
ence, as the above reasoning might suggest, between a
zone in an individual aggregate and active zone as an
semble average.

When measuring the width of active zone according to
definition of Plischke and Racz, one would generate a c
lection of aggregates of a massm, and record the radia
distance at which particlem is added in each of them. And
when measuring it in a more intuitive way, one might take
aggregate of massm21 and list the radial distances of a
possible positions at which particlem might attach itself.
Both methods would produce a list of the set of possi
locations at which particlem might be attached, that is, the
would both chart the~intuitive! active zone of a massm
aggregate. They would both seem to give comparable res

The statistical and intuitive views of width of active zon
seen in terms of how they are applied in practice, then app
to be different ways of characterizing the same aggreg
physical region. They are not incompatible views.

Still, any differences between the two views should not
crucial for the purposes of the present paper. This paper
the limited purpose of proposing a statistical model of DL
and comparing its predictions with published data in orde
test the model. Considering the logic only, the choice
view of active zone width will be appropriate for this pu
pose as long as the view it uses is the same as that o
references with which its predictions are compared. The
per compares its data with that of Tolman and Meakin@12#,
who refer one to the statistical definition of width of activ
zone as given by Plischke and Racz@14#. For the limited
purposes of the present paper, therefore, use of the statis
view is appropriate and accomplishes the intended resu
testing the proposed model.

APPENDIX B: MATRIX B

The ten-dimensional matrixB is given by the following.
The definitions of bothv0 andv1 are given in Sec. II, and the
rows and columns are numbered by the index pairs$ i , j %
511,12, . . . ,44, forwhich j > i ,

B51
2v0

v1

0
v1

0
0
0
0
0
0

2v1

2v0

v1

0
2v1

0
v1

0
0
0

0
v1

2v0

v1

0
v1

0
0

v1

0

2v1

0
v1

2v0

0
0

v1

0
0

2v1

0
v1

0
0

2v0

v1

0
0
0
0

0
0
v1

0
2v1

2v0

v1

2v1

0
0

0
v1

0
v1

0
v1

2v0

0
v1

0

0
0
0
0
0
v1

0
2v0

v1

0

0
0
v1

0
0
0
v1

2v1

2v0

2v1

0
0
0
v1

0
0
0
0
v1

2v0

2 .

~B1!
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