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Diffusion-limited aggregation as a growth process statistically invariant
under an infinitesimal affine transformation of mass and multiple spatial coordinates
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This work has two major results. First, it proposes a model of diffusion-limited aggregdiof) that
accounts for the diversity of mass dependence exponents of four characteristic lengths: radius of gyration,
major and minor asymmetry axes, and width of active growth zone. Second, it uses the agreement of model
predictions with simulation data to show that the invariance of DLA growth probability under an infinitesimal
affine transformation of mass and several growth zone spatial coordinates is consistent with the results of
simulation data, to a high degree of approximation, in the range of aggregate mass from 200 to 50 000 for the
first three of the above characteristic lengths, and in the range 1100-440 000 for the active zone width.
[S1063-651%97)09909-1

PACS numbes): 61.43.Hv

Diffusion-limited aggregatiotDLA), a process by which (3) The value ofg is different for each of the character-
an aggregate of particles grows by the addition of a successtic lengths. It also appears to vary with mass for the major
sion of randomly walking particlds ], generates growth pat- and minor axes and for the active zone width, but appears to
terns that are similar to patterns observed as arising from &e nearly constant for the radius of gyration. Table | summa-
range of widely different physical processes, such as eledizes the values of these exponents, given by numerical
trodeposition[2], dielectric breakdowii3], and viscous fin- Simulations. N _
gering[4]. My approach to writing a model of DLA is suggested by_
Investigators have used a variety of approaches in afh® asymmetry of the aggregates. One can use as a starting
tempting to understand this process. One category of ag20int the usual relationship between the radius of gyratjpn
proach has been to model the process in terms of the mech@0d massn, which is given in terms of fractal dimensidn
nism of a field of diffusing particle$5—7]. A second has
been to model the process by imposing the simplifying prop- [ ol 1)
erty of scale invariance on a growth process. These include 9 '

methods of real-space renormalization group and branchy,,gh DLA is an asymmetric process, it is usually treated
competition[8-10]. While these approaches have been sucys jnyolving only the one spatigiadia) dimension. Investi-
cessful in explaining a number of features of DLA, importantgators have foung16] that the probabilityp(m,r)dr that a
properties of this process are not yet understood. particle will be added at mass in a interval between radius
Of these latter properties, the present paper will be conr andr+dr of the active growth region is, to an order of
cerned with those related to the fact that different characterapproximation, invariant under the affifi7] transformation
istic lengths of the process, such as radius of gyration, majoF;, given by
and minor asymmetry axes, and width of the active growth

region, appear to depend on the aggregate frassber of Fo: m—Am
particleg through different exponenfd1-14. A number of
these lengths have recently been involved in a discussion of r—xor, 2

whether DLA can be described by a single scaling exponent
or whether it has a more complex scalifih]. Specifically, where\ is a real positive number.
| shall propose a model of DLA which attempts to account The asymmetry of aggregates, however, suggests that
for the characteristic length mass dependence described liyey might be more accurately described in terms of several
the following. spatial dimensions, which would allow taking this asymme-
(1) The aggregates are asymmetric. Quantifying the asymery into account. Each of the coordinates corresponding to a
metry by a moment of inertia analysis leads to a descriptiorspatial dimension would then represent a different direction
of the aggregates in terms of a major axis and a minor  of growth away from the center of the aggregate. In analogy
axisr_ [11]. to the invariance relationship given above, one might then
(2) If the aggregates are described using the characteristiexpect that the probability that a particle will be added at
lengths of radius of gyratiomgy [12—13, major and minor massm to a small region of the aggregate active zone, at a
asymmetry axes-.. andr - [11], and the width of the active position written in terms of these new coordinates, would be
zone of growthw [12-14], then the dependence of each of invariant under a scaling transformation of mass and several
these quantities on aggregate mass can be described byspatial dimensions.
power lawl <m?, wherel represents one of the lengths, and  In order to illustrate this point let us perform this gener-
the exponenp3 represents its mass dependence. alization in following intuitive way. In Eq.(2) the affine
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TABLE I. Numerical simulation values for the mass dependence expghart listed for four aggregate
characteristic lengths, together with the mass range over which they were measured. Quantities in parentheses
after exponent values are estimated uncertainties.

Characteristic length Scaling exponent Range of mass Reference
Radius of gyration 0.584 100-50 000 [13]
0.582 (0.002 100-50 000 [11]
0.588 (0.003 100-2000 [11]
0.5830(0.00149 10,000-1 000 000 [12]
0.5832 (0.0019 100,000—1 000 000 [12]
Major axis 0.567(0.009 100-50 000 [171]
0.570 (0.019 10,000-50 000 [11]
0.555 (0.018 100-2000 [11]
Minor axis 0.606(0.009 100-50 000 [11]
0.593(0.011 10 000-50 000 [11]
0.621 (0.019 100-2000 [11]
Width of active zone 0.480.01) 100-3000 [14]
0.48-0.54 100-50 000 [13]
0.48-0.56 1100-600 000 [12]

transformatior, performing the scaling can be representedform of transformationF, for A\ close to unity, and then,
by a matrix multiplying a two-dimensional column vector because the scaling invariance is statistical, applying this
with componentsn andr. In general, an affine transforma- transformation to a vector with components and (r),

tion performing scaling in a multidimensional coordinate where(r) is ensemble average of the radiuswe have the
system can be represented by a nonsingular matrix whossguation of motion

elements are real numbefs8]. When we change the de-

scription of the aggregate by replacing the radial coordinate m i (ry=(1D)(r) (5)

by a set ofN spatial coordinates; ,x,,..., Xy, We can gen- om

eralize the affine transformatioR, by replacing it with a
higher dimensional affine transformation, callFt which,
since it performs scaling, can again be represented by a no
singular matrix multiplying an N+ 1)-dimensional vector
&=(m,X{,X,,....Xy). We then have the linear generalized
transformatiorF given by

for (r), which can be identified with the average radius of
Igl_eposition and is proportional to the radius of gyration. This
result is just another form of the radius of gyration-mass
relationship of Eq(1). If the aggregates were symmetrical, it
would be a statistical model of their growth. It is a linear
equation, inheriting this property from the linearity of the
¢ =Fé&, 3) affine transformation of Eq2). It has a constant coefficient
on the right-hand side which, through its dependence on the
where¢’ is another vector representing position in the activefractal dimensiorD, contains the growth dynamics, includ-
zone. ing complex interactions between branches whose represen-
In terms of Vectoréi’ the assumption that the growth prob_ tation in a more mechanical model, one would eXpeCt, would
ability of the active zone is invariant under the scaling transbe nonlinear. It describes the active zone in terms of a single

formation E can be written characteristic length, radius of gyration, by averaging over
its complex branching and multifractal structure.
p(F&AQ(F&)=p(&£)dQ, 4) The main results of this paper are a consequence of per-

forming a not dissimilar derivation of equations of motion,

wherep(£)d(2 is the probability of a particle being added to this time using, in place of Eq2), the analogous multidi-
an aggregate, at mass in the active growth zone in an mensional transformation of E3). The resulting equations
infinitesimal regiond(}, and dQ)(F¢) is the infinitesimal  will be seen to share many of the properties of &), and in
region transformed by operatér. This invariance assump- fact will be just an extension of Eq5) to several spatial
tion acts as a requirement on change of the growth probabidimensions. Specifically, these equations are linear in the
ity as mass increases. It can be used to calculate equationssgatial coordinates. In place of a constant multiplying a
motion for ensemble averages of active zone coordinates dsingle coordinate on the right-hand side, one obtains a con-
rectly. Intuitively, one would expect that the application of stant matrix multiplying a vector of spatial coordinate ele-
this scaling transformation to the set of active zone positionsnents. Like the multiplicative constant in E®), this matrix
would then describe the statistical spatial growth of the agean be interpreted as containing the growth dynamics. Now,
gregates as mass increases. That is, the invariance assurhpwever, this information is distributed among its elements,
tion determines how positions in the active zéneill move,  the diagonal elements interpreted as representing growth
on the average, as mass increases. along a single coordinate, and the nondiagonal elements as

Let us illustrate this point in an intuitive way using the representing interactions between growth measured along
transformation of equatiof®). First, writing the infinitesimal  different coordinates.



56 DIFFUSION-LIMITED AGGREGATION AS A GROWH ... 3303

The linearity of these equations is inherited from the lin-the probabilityp(£¢)dQ) of a particle being added to an ag-
earity of the affine transformation of E¢(B). It results from  gregate, at mas® in the active growth zone in an infinitesi-
the severe restriction of statistical scaling invariance placethal regiond(), and at a position given by the coordinates
on the structure of the equations of motion. It allows them tox,,x,, . .. Xy, is invariant under a scaling of mass and spa-
represent complex dynamics by constants, and gives rise tial coordinates. In analogy to the affine transformation in
algebraic solutions. However, this should not seem surprismass and one spatial dimension of Ef), | perform this
ing in light of the fact that Eq(5), the radius of gyration- scaling by an affine transformation in mass addspatial
mass relationship, also represents this dynamics by a comlimensions. Affine transformations are linear transforma-
stant. tions that represent operations including magnifications and

These equations of motion will be seen to statisticallytranslations of coordinatd48]. As mentioned above, an af-
describe the active zone, of a two-dimensional aggregate, dine transformation performing scaling in a multidimensional
a vector of four averaged spatial coordinates, a large enougioordinate system can be represented by a nonsingular ma-
number to represent the asymmetry, in terms of a major antlix whose elements are real numbers. This is indicated
a minor axis, and the characteristic lengths radius of gyratiombove as transformatioR of Eg. (3). One can write the
and active zone width. Again, this should not be surprising irelements of this matrix, in analogy to E@), as
light of the fact that Eq(5) also statistically describes the
active zone in terms of the radius of gyration. Fij=MAi, (6)

These equations do not predict the growth of an indi- ) )
vidual aggregate. They are consequences of the invariance Where A is a real number greater than unity, and g
the growth probability under a symmetry transformation.determine matrix element values, with=0,1,2... N, ]
They are therefore statistical equations, as is(&j. =012...N. ] o ]

Since the multidimensional affine transformation leads to L&t us now write the application of the transformatién
equations of motion for aggregate growth, one would expecto vectorlf as a differential equatlon relating |nf|n|tes!mal
that in choosing the detailed form and parameters of the muichanges in active zone coordinatgsx,,... Xy as mass in-
tidimensional transformation, one could look for cluescreases incrementally. This result will be used in Sec. Il to
will be discussed below. ability under the coordinate transformatién The latter re-

Note that the model makes no assumptions about physic@tion will in turn be used to derive equations of motion for
structures of aggregate growth, such as cells or brancheS, §§atlstlca| moments of active zone pOSition. Note that this
about a growth mechanism, such as an interaction ofection contains no DLA equations of motion, but only ex-
branches through a Laplacian field. It instead is written inpressions for a mathematical transformation of coordinates.
terms of distances to the active zone, measured along various Let us first restrict transformatiok so that it induces
coordinates, and the scaling symmetry of the active zone &@nly an infinitesimal change in mass, thatswill be infini-
mass increases. If interactions between growth processes dfsimally close to unity; these results will then not apply to
discussed, they are mentioned only as interpretations ciggregates with a small number of particles. We obtain, in
terms Occurring in the Symmetry transformation. As @ this case, the fOIIOWing result for the rate of Change, with
indicates, symmetry terms containing interaction informationespect to\, in active zone positiorigiven by coordinate
may bear little resemblance to mechanical interaction termg&/€ctor §) that is produced by application of the operakor

The following discussion gives a more detailed account of
the construction of the proposed DLA model and simulation ’9_&2 e

; . . ; . > A, (7)
evidence to support it. Section | below defines a scaling 2N
transformation of mass and spatial coordinates under which
one might expect DLA to be invariant, and writes an infini- wherei=0,1,2... N, j=0,1,2... N. If we restrict the
tesimal form of the transformation in terms of differential transformation to eliminate what would seem to be the un-
equations relating changes in active zone position and aggr&hysical situation where mass and spatial coordinates inter-
gate mass. Section Il derives equations of motion for charact directly through the elemenés,; andA;o with j#0, we
acteristic lengths and discusses physical considerations igan set
volved in determining model parameters. Section |l
compares the results of the model with the data of DLA

numerical simulations. Section IV is a summary and discus: .
. y In addition, we can choose
sion of the results.

Ap=1 (8b)
|. DEFINITION OF A SCALING TRANSFORMATION
OF MASS AND SPATIAL COORDINATES without losing generality, because this choice just gives the
relation between mass and arbitrary scaling parametére
| have assumed that position in the active zone of théhen have the fOIIOWing result for the variation with reSpeCt
aggregate growth process can be written in terms of a set 6@ mass of the spatial coordinates under application of the
N spatial coordinates;, i=1,2, ... N, and have defined a operatorF:
vectoré=(m,Xq,X5,...,Xy) @S a compact way of writing ac-
tive zone position at a given aggregate mass i X:E A (9)
The basic assumption of the proposed model is then that ! uee
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where p=In(m). Now, however, i=1,... N and j where the elements of matri® are given in terms of the

=1,... N. Here, the transformation has been written in thematrix elements oA, and the sum is over all ten index pairs

form of differential equations relating change in each of the{l,n}.

active zone spatial coordinatesto change in log of masg. Writing the solutions to the equation séfisl) and(13) is
simplified by the fact that both have the same form, given by

Il. A MODEL OF AGGREGATE GROWTH the vector equation
Using the coordinate transformati®f in the incremental 9

form of Eq. (9), will allow us to derive statistical equations o u=_Lu, (14

of motion for the active zone coordinates and characteristic

aggregate lengths. First, let us write the invariance of the

rowth probabilityp(x, «)dQ) under the coordinate transfor- WhereL represents either matri or B, and whereu indi-
growih p yPIX, p . cates the vector whose elements are either the averaged co-
mation F, where x represents the coordinate set

X R . rdin ; i iXi
X1,X2,...XN, and a prime on a quantity indicates it has been’ dinates(x;), for matrix A, or the cumulantgx;x;)c, for

; ; ; matrix B. The well-known solution of this equation is then
incrementally changed according transformation of €. iven b
The invariance of the probability is represented by the equa9 y

tion
_— _— u(p) =2 e (- u(uolexdl(n—po)l, (19
Z paxiﬂ Ainj+ pﬁy::“

! ' whereu(uw) is the solution at mass parameteru(u,) is the
d ) initial value of the solution aj.y, e(l) is an eigenvector of
+px,u) o BOGu) ] =,=0, (108 the matrixL corresponding to the eigenvallieFor the case
of a non-self-adjoint matri8, e* (1) is an eigenvector of the

whereJ, given by adjoint of matrixL .cqrrespor.lding to the eigenvalL:eforth_e
case of a self-adjoint matrid, e*(1)=e(l). The guantity

dOX 1) =3(X ) dQ(x, ), (10b) e*(1)-u(ug) is the inner product the vectors*(l) and

u(ug), and the summation is carried out over all eigenvalues
. . . . of the matrix.
is the Jacobian determinant of the transformation. Use of EQ. As argued in the introduction, one would expect that in

(10), in a direct calculation of the change in coordinate mo- hoosing the parameter values of the multidimensional trans-
ments induced by the transformation, then yields one set ng P . .
ormation, and therefore of the equations of motion, one

equations of motion for the ensemble average$ of the X :
. ; . could look for clues among the physical properties of the
aggregate coordinates and another for their two-point cumu: o
. rowth process. Specifically, the fact that the mass depen-
lants (x;xj)c. The coordinate ensemble averages lead t

equations of motion for radius of gyration and major anoldence exponents of the major and minor axes differ by only

! ) a fraction of their average value suggests that their difference
minor asymmetry axes, and the two-point cumulants lead to

equations for active zone width. Appendix A contains a dis-S caused by an interaction of growth along different spatial
q - FAPP dimensions. Let us identify this interaction with the off-

cussion of how active zone is defined and measured, an lagonal elements in the equations of motion, that is, off-
how it is related to the two-point cumulants. di . i
. ! . . iagonal elements of matrik. Similarly, the fact that these
Performing the direct calculations mentioned above, ON& o5 mass dependence exponents differ from the space-fillin
arrives at equations for the ensemble averages, P P . X P 9
value of one-half by only a fraction of this value suggests
that, if these growth processes were mathematically isolated,
i<xi>zz Aii(x:), (12) they would have identical ma_ss—dependent exponents, and
I ] I that each would be space filling. Let us then identify the
motion of the isolated processes with the diagonal elements
with i=1, ...,4. Theequations for the cumulants can, by of A. A comparison of the analogous expressions in E2js.
making use of their symmetry under interchange of the coand (6) would then lead us to set each of the diagonal ele-
ordinate indices, be written as the following set of ten equaiments ofA to the space-filling value of one-half.
tions: The spatial coordinates , as described above, represent
directions of growth away from the aggregate seed particle.
d Because the asymmetry of the aggregates is described ad-
o <Xixj>c:; Aik<xkxj>c+% Ai(XXi)e, (12 equately, in rectangular coordinates, by the magnitudes and
mass-dependent exponents of their major and minor axes
[11], it would seem that one can define the spatial coordi-
natesx; as four positive distances from the seed particle to
positions in the active growth region, each in a direction at a
90° angle from its two neighbors. That is, if a two-
dimensional rectangular coordinate system were centered at
the seed particle, the coordinateswould lie along all four
positive and negative coordinate axes.

wherej =i, andi,j=1, ... ,4. If further, the ten index pairs
{i,j} are treated as a single index, then E@2) can be
written in the form

J
Em <Xixj>c:(%) Bi.jyam{XiXn)c (13
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TABLE II. Initial conditions, used with either Eq¢$11) or (13),  that quantity. Table Il is a summary of the initial conditions
in calculating the growth of four aggregate characteristic lengths ar¢or Eqgs. (11) and (13) together with the references from

listed along with the mass for which they are given. which the data was taken. When choosing initial conditions
— for calculating the angular independent radius of gyration, |
Characteristic , take the coordinates, ,...x, to be fixed in space, the values
length Mass (Xoad (Xeven (Xeven or ocd/ (Xeverkodd  of their ensemble averages to be independent of individual
Radius of 200 1047 10.47 aggregate orientation, and each average to be equal to the
gyration[11] radius of gyration. The initial conditions for these coordi-
Major, 200 854 5.03 nates are the_n given directly b_y the s_lml_Jlapon resij_l@.
minor axeg11] For choosing major and minor axis initial conditions, |
Width of 1096 87 take the coordinates;,...x, to be fixed in the body of the
active zond21] aggregate, and take the ensemble averages of the aggregate

to have inversion symmetry about the seed particle. | also

take each of the ensemble averages of coordinatesdXx,
Finally, if one of these growth processes interact withto be equal to that of the major axis and, similarly, take those

others, the most reasonable expectation is that it would inof X, andx, to be equal to that of the minor axis. The initial

teract with its neighbors to its right and left. conditions for these coordinates are also given directly by the
With these assumptions, the elements of the marifor ~ Simulation resultg11].
1<i, j<4, take the following values For active zone initial conditions, | again use coordinates
fixed in space because active zone width is also independent
Vo, =] of individual aggregate orientation. For E(.3), in which
Aj=1 v1, li—j|=1 ori=1j=4 orj=1i=4 active zone initial conditions are to be used, there are two

independent quantities that enter into these initial conditions:
(16)  the same-coordinate cumulapg), and the cross-coordinate

cumulant(x;x;)c, i #]j. Actually, in order to calculatg for
Wherevo represents the space_fi”ing value of One_ha”’ andhe active zone width, as is done here, all that is needed is the

v, is an undetermined constant representing the interactioftio of these the quantities. _
between a growth process and its neighbors. Since the ele- Because | am not aware of any previous measurements of

expression for matri is given in Appendix B. In order to make clear how these cumulants were measured,

note that in a single aggregate each coordixate. .x, rep-
resents the active zone position, at a given mass, measured
along one the four orthogonal half-axes. Therefore, for ex-

In summary, the above argument, by starting with theample, the same-coordinate cumulgmt). involves aver-
assumption that the DLA growth zone is invariant under theages of the distance, from the seed particle to the active
infinitesimal affine transformation defined by Eq8), (6),  zone on half-axis number 1. The cross-coordinate cumulant
(8), and(16), describes a model of aggregate growth which(X;X,). involves averages of the distancesandx, to the
implies the equations of motion, given by E¢s1) and(13),  active zone, where both distances are from the same aggre-
for the growth of the characteristic aggregate lengths. Thgate at the same mass.
equations of motion have the form of an initial value prob- Using the simulation, | first found values for the two cu-
lem with one undetermined parametgr. The following dis- mulants at mass intervals of 200 in the mass range 600 to
cussion(1) determines these initial conditions from the nu- 1600 using 200 aggregates for each p¢i€l]. On a log-log
merical simulation data2) finds a value for parameter; , plot of each cumulant against mass, a linear regression gave
and(3) displays the evidence that the predictions for growtha best fit to the data and a value for each cumulapt equal
of the characteristic lengths from their initial values are conto 7. The resulting ratio of same-coordinate to cross-
sistent, to a high degree, within the mass range consideredpordinate cumulant at that value @f is approximately
with the assumption of affine symmetry. —8.7. Data for the cross-coordinate cumulant contain a good

For the calculation of radius of gyration and major anddeal of randomness. Taking this into account gives approxi-
minor axes, the mass range considered here is 200—50 00Date uncertainty limits of- 8.7+ 3.8 for the upper limit and
which includes all but the lowest part of the mass range of-8.7—7.0 for the lower limit.
the data in Ref[11]. Initial conditions for these quantities Using the initial conditions above, one can find a value
are set at mass equal to 200. For the active zone width, tHer the undetermined parametef. The most straightfor-
mass range is 1100-440 000, corresponding to valugsof ward and accurate way seems to be to fit the calculated value
the range 7-13, which is approximately the mass range off the exponenis for radius of gyratiorr 4 to its high mass
the data in Ref[12]. The initial condition is set gt equal to ~ simulated value. The reason is that the model-predicted value
7. In both cases, including lower mass values would nofor 8 is a constant, and its simulation value appears to be
further test the proposed model, because it does not apply twearly constant over the range for which it has been mea-
aggregates of small mass. sured. The simulation value is constant to withif for

Initial conditions for calculating a characteristic length aremasses above approximately 1800, and appears to oscillate
chosen to reflect the experimental situation, including theabout its high mass value for masses down to about 1000
relevant coordinate average or cumulant, used to measufé?2]. The result of this fitting procedure is that=0.0415,

0 otherwise,

Ill. COMPARISON WITH NUMERICAL SIMULATIONS
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FIG. 1. The log of each of three characteristic lengths is plotted £ 2. The ratio of the minor to the major symmetry axis

against log of masg. The Iin_es represent calculated result§ of ther< Ir- is plotted against the log of mags The line represents the

proposed model, and the points represent results of numerical simiy |y jated results of the proposed model, and the points represent

lations from Ref[11]. The major axig .. is represented by the top he results of numerical simulations from REF1].
line and the points;+; the radius of gyration, is represented by

the middle line and the point#; the minor axisr _ is represented the radius of gyration is constant in the three mass ranges,
by the bottom line and the points# . while the simulation value is nearly constaag).

As can be seen in Fig. 1, calculated values for all three
corresponding to an exponegt=0.5830 for the radius of characteristic lengths appear to increase at a slightly slower
gyration. rate than simulated values. A possible explanation is that

Then, applying the solution given in E€L5) to Eq.(11),  initial conditions are set here at the small mass value of 200.
together with the appropriate initial conditions, gives thelf they are set at a higher value, such as 1100, the discrep-
mass dependence for the growth of the radius of gyration an@ncy decreases.
of the major and minor axes. These results, shown in Figs. 1 In an analogous way to E@11), the solution of Eq(13)
and 2, agree well with simulation results. Figure 1 shows thevields the mass dependence of the cumuldmfy. for i
variation of the three characteristic lengths with mass, and=1 ... 4.These quantities, all equal because of the symme-
Fig. 2 shows the variation of the ratio of minor to major axistry of the initial conditions, are each equal to the square of
with mass. Also, calculated values for the mass-dependendbe width of the active zone. Therefore, the derivative with
exponenis for the major and minor axes, shown in Table Ill, respect tqu of the natural logarithm of the square root of any
agree well(to within 1.3% or betterwith simulation results (xf)c is equal to the mass dependence expongmtf the
in the three mass ranges 100-2000, 10 000-50 000, arattive zone width. Shown in Fig. 3, for the mass range of
100-50 000. Both the calculated and simulated valueg8 of about 1100-440 00020], the calculated values g8 have
for major and minor axes vary monotonically over the threethe correct qualitative increase with mass, and also agree
mass ranges. For the major axis, the calculated value inwell with simulation values.
creases by 1.6%, while the simulated value increases by Although the simulated value for the initial condition used
0.9%; and for the minor axis, both values decrease, the cato solve Eq.(13) has a great deal of uncertainty, the solution
culated value, by 2.5% and the simulated, by 4[@%]. In  to the equatior(in Fig. 3) is only weakly dependent on its
contrast, as mentioned above, the calculated valug fur  value. For example, gt equal to 7, this uncertainty could

TABLE IIl. This list compares results for the mass dependence exporn@mf three characteristic
aggregate lengths given by the proposed model and by numerical simulations. The results are listed with the
mass range for which they were measured for calculated. References are to numerical simulations. Quantities
in parentheses after simulation exponent values are estimated uncertainties.

Model Simulation
Characteristic length Range of mass value value Reference
Radius of gyration 200-50 000 0.5830 0.58@D00149 [12]
Major axis 200-2000 0.561 0.55M.018 [11]
10 000-50,000 0.570 0.57®.019 [11]
200-50 000 0.566 0.5670.004 [11]
Minor axis 200-2000 0.613 0.62(0.019 [11]
10 000-50 000 0.598 0.59®.01) [11]

200-50 000 0.606 0.6060.009 [11]
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0.56 r values of mass dependence accounts for the variation in the
active zone width exponemt, within a mass range of 1100—
440 000, from a low value of about 0.48 to a high value of
about 0.56. These limits are comparable to half the values of
the two contributing eigenvalues, that is, 0.417 and 0.583.

0.54

0.52 IV. SUMMARY AND DISCUSSION

This work has two major results. It proposes a model of
DLA that accounts for the diversity of mass dependence ex-
. ponents of four characteristic lengths: radius of gyration, ma-
X jor and minor asymmetry axes, and width of active growth
zone. It uses the agreement of model predictions with simu-

0.48 — lation data to show that the invariance of DLA growth prob-

7 8 9 10 11 12 13 ability under an infinitesimal affine transformation of mass
n and several growth zone spatial coordinates is consistent
with the results of simulation data.

FIG. 3. The mass dependence expongntor the aggregate The limitations of the model include that it provides only
active zone width is plotted against log of massThe line repre- @ statistical picture of DLA. It makes testable statements
sents the calculated results of the proposed model, and the poin@out only the characteristic lengths of the active growth
represent the results of numerical simulation from R&g). zone, all of which are of order of magnitude of the aggregate

itself. 1t does not apply to small aggregates or the early
change active zone width by as much as 1.6% andequal  growth period of large aggregates; initial conditions for the
to 13, it could change width by as much as 0.8%. equations of motion, then, must be supplied by simulation. It

In addition to the agreement of calculated characteristidhias been tested for only the ranges of mass where character-
lengths with numerical simulation results, the calculated valistic length data are available.
ues have clear geometric interpretations within the eigenvec- However, the model does predict the change, as mass in-
tor space of the matrices andB. Table IV shows the eigen- creases, of the four characteristic lengths with a high degree
vectors, and corresponding eigenvalues, that contribute to thef accuracy. It predicts quantitative relationships among frac-
growth of the aggregate characteristic lengths. For the radiuml dimension, aggregate asymmetry, and the multiple mass-
of gyration, only the angular independent eigenvector condependent exponents.
tributes to its growth, because of the angular independence The affine symmetry portrays aggregate growth, not as a
of the initial conditions. The corresponding eigenvaluedetailed dynamics of aggregate structures, but as the result of
0.5830 is therefore equal to the mass dependence expBnentscaling invariance of the growth process in multiple spatial
of this characteristic length. For the major and minor axesdimensions, that is, as the result of an overall restriction of a
both the angular independent eigenvector and the inversioiack of preferred length parameter. Multiple spatial dimen-
symmetric vector contribute to growth, because of the inversions, however, allow the symmetry transformation to have
sion symmetry of the initial conditions. The eigenvalues ofterms that lead to interactions between growth processes
these two vectors, 0.5830 and 0.4170, respectively, thereforalong different coordinates. These interactions provide an
both contribute to the exponet for the major and minor explanation of the complex behavior of aggregate growth.
axes. This has the consequences thatneither 8, for the  They arise within the restriction of scaling invariance and
two axes, is constant, and th@) the 8 of the minor axis has take on a different mathematical form from the interactions
a larger value than either of the two contributing eigenval-of the detailed dynamics.
ues, because of the partial cancellation of the two contribu- The model contributes to the ongoing discussion of
tions. For the active zone width, only the two angular inde-whether DLA is characterized by a single scaling exponent,
pendent eigenvectors, with eigenvalues 1.166 and 0.834yith complications arising from finite-size effects such as
contribute to growth, again because of the angular indeperrandom fluctuations, or whether DLA has a more complex
dence of the initial conditions. The combination of these twoscaling property. By its success in accounting for character-

0.50

TABLE IV. Two eigenvectors of matriXA and two of matrixB contribute to the growth of the four
characteristic lengths. The componesis(i=1-4 for A andi=11,12...,44 forB) of each of these is
listed here along with its corresponding eigenvalue.

Eigenvector ofA Eigenvector ofB
Matrix eigenvalue €odd €even €11,€13:€22,€24,€33,€44 €12,€14,€23,€34
A 0.5830 0.5 0.5
0.4170 0.5 -0.5
B 1.166 0.323 0.323

0.834 0.323 —0.323
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istic length growth, it suggests that complex scaling, that isPlischke and Racfl4], all of which use the statistical view
invariance under the multidimensional affine transformationpf active zone and the original statistical definition of its

is a reasonable explanation for the diversity of mass deperwidth.

dence exponents among the four characteristic lengths. It What then is the relationship between the intuitive and
gives a physical picture of how this scaling arises in terms oftatistical views? Since the statistical view of the active zone
growth processes which, if isolated would have simple scaltells us only about ensemble averages and ensemble fluctua-
ing properties, but instead interact and form a more complexions, one might ask if it is capable of describing the width of
aggregate scaling relationship. the active zone considered as the fragmented outer region of

The model therefore describes DLA as a process in whicla single aggregate where particles are added? The following
the different scaling exponents of the characteristic lengthsonsideration indicates that there is not such a great differ-
arise from deterministic dynamics. But it predicts that thisence, as the above reasoning might suggest, between active
complex scaling will only occur for finite mass. In the limit zone in an individual aggregate and active zone as an en-
of very large mass, it predicts that all characteristic lengthsemble average.
will scale with the same exponent, that is, all growth termsin  When measuring the width of active zone according to the
the solution of the equations of motion will become negli- definition of Plischke and Racz, one would generate a col-
gible except for those corresponding to the largest eigenlection of aggregates of a mass, and record the radial
value. distance at which particls is added in each of them. And,

In spite of the differences between the picture of DLA when measuring it in a more intuitive way, one might take an
given by the proposed model and that of the early intuitiveaggregate of massi—1 and list the radial distances of all
view of DLA as simple scale invariant growth, both have apossible positions at which partici® might attach itself.
form of scaling symmetry under which the growth is statis-Both methods would produce a list of the set of possible
tically invariant and which simplifies the view of the process.locations at which particlen might be attached, that is, they
would both chart the(intuitive) active zone of a masm
aggregate. They would both seem to give comparable results.

The statistical and intuitive views of width of active zone,

The active growth zone in DLA can be understood intu-seen in terms of how they are applied in practice, then appear
itively as the fragmented outer region of a single aggregatéo be different ways of characterizing the same aggregate
where particles are addédl], or statistically as a distribu- physical region. They are not incompatible views.
tion of locations, over an ensemble of aggregates of given Still, any differences between the two views should not be
mass, at which the last particle is addéd]. The purpose of crucial for the purposes of the present paper. This paper has
this discussion is an attempt to relate these two views ofhe limited purpose of proposing a statistical model of DLA,
active zone, and to determine their relationship to the proand comparing its predictions with published data in order to
posed model. test the model. Considering the logic only, the choice of

Let us first show that the proposed model uses the statisdew of active zone width will be appropriate for this pur-
tical view of active zone. Let us examine H@) of a paper pose as long as the view it uses is the same as that of the
by Plischke and Racfl4] that contains the original defini- references with which its predictions are compared. The pa-
tion of width of the active zone. Written belofmumbered as per compares its data with that of Tolman and MedHKia,

PR 2 in its original notation, this equation consists of defi- who refer one to the statistical definition of width of active

nitions of mean deposition rading and the square of active zone as given by Plischke and Radzl]. For the limited

zone widthgﬁ (please note that their quantigﬁ is not the  purposes of the present paper, therefore, use of the statistical

vector ¢ used above view is appropriate and accomplishes the intended result of
testing the proposed model.

APPENDIX A: WIDTH OF ACTIVE GROWTH ZONE

M
1 _ - .
rN:M E ra(i), §ﬁ=(fN—fN)2- (PR2 APPENDIX B: MATRIX B

=1
I The ten-dimensional matriB is given by the following.

) _ W " . The definitions of botly; andv; are given in Sec. I, and the
The authors defingy(i) as “the deposition radius of théth rows and columns are numbered by the index péiirs}
particle in theith cluster.” In other words, the mean depo- _ 14 12 44, forwhich j =i
sition radius is defined as an average value of the radius = Y '

tions of motion for the two-point cumulani;x;).. The 0 vy 0 O O vy vy 2vy vg
present paper uses active zone width simulation results of 0 02vy; 0 0 0 0 2v; 2v
Tolman and Meakin[12], Meakin and Sandef13], and (B1)

taken over an ensemble of aggregates. More importantly for 2vg 2vy, 0 2v,, 0O O O O O O
our purposes, the notation indicates that the square of active vy 2v9 v O vy O v, O O O
zone width is also an aggregate ensemble average, of squares 0 v;20p v4 O v; O O wv; O
of deviations of the deposition radius from its mean. That is,
- . . . U1 0 U1 ZUO 0 0 U1 0 0 U1
it is the variance of the deposition radius over the ensemble.
. . 0 21}1 0 0 200 2U1 0 0 0 0
In terms of the coordinates of the proposed model, which p=
represent position in the aggregate active zone, it would then 0 0 vy 0 vy 2vo v3 vg 0 O
seem that active zone width can be represented by the cumu- 0 vi 0 vy O vy 2vp O wv; O
lants(x?)., and its equation of motion is given by the equa- 0 0 0 0 0 2v; O 2v92v; O
0
0
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